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The Dynamical Scattering Amplitude of an Imperfect Crystal. IlI .  
A Dynamical Diffraction Equation for Topography in the Spatial Coordinate Representation 
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Based on a general dynamical theory of diffraction, an integral equation for dynamical diffraction in 
imperfect crystals is obtained in the spatial coordinate representation. This equation is derived for dif- 
fraction topography in the symmetrical Laue geometry from the basic dynamical equation of diffrac- 
tion previously derived in the momentum representation. Discussion is presented on an interpretation 
of this integral equation beyond the given diffraction geometry. This equation can be considered as a 
basic equation for diffraction topography. 

1. Introduction 

It has been demonstrated in previous papers (Kuriy- 
area, 1970, 1972, 1973) that a general dynamical theory 
of diffraction, i.e. the quantum theory (Ashkin & Kuri- 
yama, 1966; Kuriyama, 1967a), can reproduce the ray 
theory (Penning & Polder, 1961, 1964; Kato, 1963, 
1964a, b; Bonse, 1964; Kambe, 1965) as well as the 
wave theory (Takagi, 1962, 1969; Taupin, 1964). In 
so doing, the nature of the approximations inherent 
in the latter two theories has been clarified. Of these 
two, the ray theory has been proven to excel the other 
as theory. However, in order to apply this theory in 
a rigorous way, one has to find a set of canonical trans- 
formations without making an ad hoc choice for the 
ray trajectories. This creates a formidable computa- 
tion problem. On the other hand, the wave theory, 
though containing theoretical deficiencies, had an ap- 
pealing feature, in that it dealt with the wave fields 
directly and, in turn, with the amplitudes of the waves. 
It was also believed that the wave theory could easily 
be handled numerically. However, it has been sub- 
sequently shown that this theory, too, requires a large 
amount of work in its computation for a given set of 
atomic displacements in a crystal. 

As a rule, regardless of the type of theory, it does 
not seem possible to calculate the intensity distribu- 
tion in topographic images, unless a major computer 
effort is undertaken, case by case, for various types of 
crystal imperfections. It is, therefore, desirable to seek 
a more fundamental equation which is theoretically 
accurate or involves the least approximation in the 
fundamental process of its derivation, since the cal- 
culation has to be performed by a computer anyway. 

Previously, such an equation was derived in the 
momentum representation (Kuriyama, 1970, 1972). 
However, the equation in the coordinate representa- 
tion is much preferred, because the atomic displace- 
ments in a crystal are given as local functions. In the 
momentum representation, the geometrical factor has 
to be calculated first from these local functions to ob- 

tain the momentum representation of the displace- 
ments. This procedure is admittedly unappealing. In 
this paper the objective is, therefore, to present the 
basic equation of dynamical diffraction for imperfect 
crystals in the spatial coordinate representation. 

2. The dynamical scattering amplitude for an 
imperfect crystal 

In the scattering formalism of modern quantum theory, 
one deals with the exact quantum states of the system 
composed of the incoming particles and the scatterers. 
These states are called Heisenberg states and are given 
by the exact solution of the Schr6dinger equation for 
the total Hamiltonian of the system. Dynamical vari- 
ables such as field operators, therefore, obey the Hei- 
senberg equation of motion. Before the incoming par- 
ticles strike the scatterers, the exact Heisenberg state 
is called the in state, which implies that the incoming 
particles are free and the scatterers (for X-ray scatter- 
ing, electrons in the crystal) occupy energy levels be- 
low the Fermi energy. This condition for the scatterers 
defines the ground state of the crystal. After the par- 
ticles are scattered out of the crystal, one can define 
out states in a similar fashion. The out states represent 
the Heisenberg states in which the scattered particles 
are again free and the crystal can be either in its 
ground state or in one of the excited states. Obviously, 
the out state involving the ground state of the crystal 
leads to elastic scattering, while other out states are 
related to the processes of inelastic scattering (Kuri- 
yama, 1971). In this paper, we confine ourselves to 
elastic scattering, since the dynamical diffraction effects 
in an imperfect crystal are our major concern here. 

When the crystal diffracts the incoming particles and 
a detector receives the scattered particles, the state of 
the system changes from the in state to the out state. 
Therefore, there is a quantum transition from the in 
state to the out state associated with the diffraction 
phenomenon. The scattering amplitude of the system 
that is equivalent to the diffracted amplitude of the 
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outgoing particles is, in terms of the in to out transi- 
tion, given (Ashkin & Kuriyama, 1966; Kuriyama, 
1967a, b, 1968) by 

(cb; k'v';  R';  out Iq~; kv; R; in) 
= ( k ' , R ' ; o u t l k ,  R ; i n ) .  (2.1) 

Here the incoming particles having momentum k and 
polarization direction v strike the crystal in its ground 
state (~b) at position R and the particles come out at 
position R' with momentum k' and polarization direc- 
tion v', leaving the crystal in its ground state. This 
quantity can be written 

(k ' ,R ' ;  out Ik, R; in) 

=l dap I d3p'A*(k'p' ; R')S(p"p)A(k'P; R),  (2.2) 

in terms of the scattering matrix element S(p',p) and 
the spectral distributions A and A* for the incoming 
and the outgoing particles (or the response of the 
detector) respectively. 

It has been shown by Kuriyama (1970) that the 
scattering matrix element S can be given in a com- 
pact form for a crystal plate of thickness L: 

S(p', p) = (pdlpl)O(lp'l - [pl)  

x ~ ~ O(pt +J t+qr -p~)[S(p ' ) ]~ :  2 ] ,  (2.3) 
q J 

where the subscripts t and z designate the tangential 
and normal components of a vector relative to the 
crystal surface. The $ matrix is a super-matrix, i.e., a 
matrix of matrices. The (I,J) element of a super- 
matrix is given by a matrix whose elements are specified 
by (q, q'). In this notation,]" a super-matrix S is written 

q ,  q '  [Sh, j • The matrix S has the following form: 

where 

and 

[M (p)]~;~' = 

S(p) = exp [ -  icrflVl(p)], (2.4) 

a f = L / 2 k ' z  , (2.5) 

Pz tt)2 __ pZ}Oqq,Olj 
(p + I +  q)z { ( p + I +  

Pz 
( p + J + q ' ) ~  

y( I+q;  J + q ' )  .t (2.6) 

The quantity ?, is given by 

y( I+q;  J + q ' )  

1 ~ v z ( I + q ; J + q ' ) e x p [ - i { I + q - J - q ' } R , ] ,  (2.7) 
N l  

+ The definition of the super-matrix element [~lq.q' is dif- , " J J I , J  

ferent from the one described in previous papers (Kuriyama, 
1970, 1972, 1973). The previous definition is obtained by 
changing the signs of I, J and q,q': 

[S]~t,~' (present)= -q'-q' , [$]-l ,-a (previous). 
See also the change in definition of the M matrix, equation 
(2.6). 

where N is the total number of atoms in the crystal, 
v~ is the 'atomic' polarizability of the atom at the lth 
site, and R t is the actual position of the lth atom, being 
displaced by u~ from its ideal position, 1. The set of 
l's forms the perfect lattice, conventionally called the 
perfect reference crystal. Since the matrices S and M 
are expressed as a super-matrix, one can identify I or 
J as a reciprocal-lattice vector defined in the perfect 
reference crystal. Consequently, the superscript, q or 
q', is thought of as a vector describing the deviation 
from a reciprocal-lattice point. 

3. Spectral distributions for the incoming and the 
outgoing particles 

In the calculation of the dynamical scattering amplitude 
of an imperfect crystal, equation (2.2), the incident 
particles are allowed to form a beam of any arbitrary 
shape falling upon a crystal at any desired position. 
These characteristics of the incident beam are de- 
scribed by the spectral distribution function A, which 
determines the momentum and the energy distribution 
(described by p) as well as the geometrical position of 
the peak intensity (described by R). As a result of the 
properties of the Fourier transform, the spectral func- 
tion of a beam peaked at R is related to that of the 
beam peaked at 0 by the relation 

A(p,p'; R )=  A(p,p'; 0) exp [ i (p-p ' )R]  
= A(p,p')exp [ i (p -p ' )R] .  (3.1a) 

Let us introduce the matrices, A and W, whose ele- 
ments are defined by 

and 
[Alp. p , -  A(p',p) (3.2) 

[W(R)]p. p, = exp (ipR)Jpl,,. (3.3a) 

Then equation (3.1a) can be given by the matrix ele- 
ment 

A(p, p' ; R) = [W- I(R)AW(R)]D, 1,,, (3.1b) 

where 

W-I(R)W(R) = W(R)W-I(R) = I.  (3.4) 

In a similar fashion, we can identify A* as a matrix 
associated either with the beam coming out of the 
crystal or with the detector system (slits, analysing 
crystals and a detector). In the original formulation 
of equation (2.2) by Ashkin & Kuriyama (1966), a 
complete orthonormal set of one-particle wave packets 
constructed from positive-frequency free-photon wave 
functions to represent possible free particle states was 
adopted. This treatment is equivalent to the physical 
situation in which the detecting system does not limit 
further the momentum and the energy response of the 
crystal to the incident beam. In this case, A* in equa- 
tion (2.2) is the complex conjugate of A. However, if 
additional slit systems are introduced to detect the 
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:scattered beams, A* can be replaced by a spectral func- 
tion which characterizes the momentum and energy 
response of a detector and its location. This principle 
follows from the multiplicative property of the S ma- 
trices for successive events. In any case, the spectral 
distribution A* is given by the matrix element 

A*(p,p'; R) = [W-'(R)A*W(R)]p. p,. (3.5) 

4. Matrix representation of the dynamical scattering 
amplitude 

In diffraction problems, one can always distinguish 
each diffracted beam from others including the trans- 
mitted (0-diffracted) beam. It is, therefore, convenient 
to specify which diffracted beam is being observed. 
For this purpose, let us define the variables p and p' 
in terms of the reciprocal-lattice vectors and the devia- 
tions from the nearest reciprocal-lattice point, and let 
the momentum and the energy of the incident beam 
be dummy variables: 

p - k + q i  (4.1) 
and 

p j { q } - p + J + q = k + J + q ~ + q .  (4.2a) 

Then the scattering matrix S can be expressed in 
terms of these new variables as follows: 

P= J(Ip'l-lpl) ~ ~ J(pt+Jt+q,-p;) S(p',p)= - ~  J q 
t O, - - q  x [S(p )]o,-a 

= ~, ~, [p=/(pj{q})=]J(p'--pj{q}) 
J q 

O, - - q  x [ S ( k + J + q , + q ) ] o . _ j  
& r q ,  

_ -- ~ ~[P=/(PJ{q})=] (P -Pj{q})[S(k)]~, ~+ q~, 
J q 

(4.3) 

where we have made use of the following relations, 

(p,/lpl)&(lp'[- Ipl)J(p, + Jt + qt - p;) 
=[p,/(pj{q})=]J(p'-pj{q}) (4.4) 

and 
[ S ( p + K + -  q,q' rst-'~lq-~'q'-~ (4.5) 

The relation (4.5) can be easily proven from the prop- 
erty of the M matrix, (2.6), using the definition of ma- 
trix exponential (Kuriyama, 1972). Substituting the ex- 
pressions (4.3), (3.1b) and (3.5) into (2.2), we obtain 
the scattering amplitude of an imperfect crystal 

(k',R'; out Ik, R; in) 

= ~a I d3q~ I d3q 
(k + q~)= 

(k + J + q~ + q)= 

X [ W  - 1  ' * ' ~' q + q i  q + q l '  (R)A VV(R)]K,j [S(k)]j,o q' 

x [W-I(R)A W(R)]~f,g, (4.6) 

where the momentum of the outgoing beam is ex- 
pressed by 

k ' = k  + K + ~;-- k~: (4.2b) 

in the same view as adopted for equation (4.1) and 
(4.2). The K is a reciprocal-lattice vector in the perfect 
reference crystal and implies that the K-Bragg dif- 
fracted beam is being observed. 

If the experimental condition for detection of the 
diffracted beams allows us to assume 

(k + q,)= k= 
(k+K+q~+qf)=  = (k+--K)= ='rK, (4.7) 

then the scattering amplitude is written in a simple 
product form of matrices: 

(k'K,R'; out [k,R; in)=z~[F]~:,~, (4.8) 
where 

F(R' ,R)= W-I(R ' )A*W(R')S(k)W-I(R)AW(R).  (4.9) 

It immediately follows that the matrix F becomes iden- 
tical to S when the incident beam is an ideal plane 
wave and the spectral function for a detector has an 
ideal angular resolution. 

However, a case of practical interest is found in 
topographical observations of the interior of the crys- 
tal. In this case, one uses a fairly well collimated, but 
well localized beam as an incident beam and observes 
the intensity distribution of a diffracted beam at a 
short distance from the crystal. Theoretically we iden- 
tify this case as the 'spherical' wave case where the in- 
cident beam behaves almost like a spherical wave (the 
angular divergence of the beam is larger than the actual 
rocking curve width of the crystal), and the detector 
spectral function has a poor angular resolution, but a 
good resolution for locations. 

For topography, one is not terribly concerned about 
the angular distribution of the outgoing beams, ex- 
cept for their general Bragg diffraction directions, for 
example, a transmitted direction and an tt-Bragg dif- 
fraction direction. Therefore, the spectral function as- 
sumed above for the detector can be considered as 
reasonable. However, the above assumption for the in- 
cident beam is worthy of comment. In principle, the 
state of the incident beam is completely independent 
of the state of a scatterer crystal and the state of detect- 
ing systems. Therefore one can have, as an incident 
beam, an ideally well collimated beam which does not 
possess the angular divergence. In previous papers 
(Kuriyama, 1972, 1973) the scattering amplitude for 
such an ideal incident beam has been discussed. In 
this paper, however, we adopt the 'spherical' wave case 
for a mathematical reason. As will be seen later, one 
can calculate the scattering amplitude for an ideally 
well collimated incident beam on the same principle 
as that developed in this paper with a slight modifica- 
tion. 

In the 'spherical' wave case, the spectral functions 
are given by the following matrix elements 

A C 3 0 A  - 5 
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( A ) p ,  p, = (A)~t'~ t" = A o O l o O i a ,  regardless of q and q', 
(4.10a) 

and 

(A*)p, p, = (A)~;J t' = A K C ~ I K r l J  , regardless of q and q'. 
(4.10b) 

Thus, the relevant matrix element of F is given by 

g, O [F]~. o 
=AoAK exp ( - i cR ' )  ~ ~ [W(R')S(k)W-~(R)]~:'~ ' . 

q q' 

(4.11) 

5. Calculation of the F matrix 

To obtain the matrix elements of F, we need to cal- 
culate the matrix S. In previous papers (Kuriyama, 
1972, 1973), two attempts were made to calculate this 
matrix approximately. Although, then, the results were 
known not to be rigorous, it was believed that they 
were good enough for practical purposes and were 
easily understood intuitively by the traditional dynam- 
ical diffraction theory for a perfect crystal. These two 
attempts reproduced the ray theory (Kato, 1963, 1964a, 
b; Kambe, 1965, 1968) and the wave theory (Takagi, 
1962, 1969; Taupin, 1964), and clarified the relation- 
ships among the existing phenomenological theories 
(Penning & Polder, 1961, 1964; Bonse, 1964; Wilkins, 
1966; Balibar & Authier, 1967; Dederichs, 1966, 1967 
and others). However, it was found that the phase 
modulation of the diffracted beams could not be dealt 
with properly without requiring an elaborate calcula- 
tion. In this section, we therefore follow a standard 
mathematical procedure to obtain the S matrix (Neu- 
mann-Liouville expansion). 

Before calculating the S matrix, we turn back to the 
definition of the W matrix, equation (3.3a). In the 
super-matrix representation where the index p is re- 
placed by p ' = k + J + q ,  as done in the previous seo- 
tions, the W matrix can be defined in general by 

[W(R)Jp.p, ~ [W(R)]~t-je=exp (iq. R)rq.q.,Olj , (3.3b) 

whose diagonal elements are independent of I. This 
change does not affect the definitions of the spectral 
functions, (3.1a and b). This can be easily assured by 
inspection especially for the explicit forms of A and 
A* defined by (4.10a and b). 

From (2.4) and (2.5), the matrix S(k) is given by 

where 
S(k) =exp [ -  krKM(k)], (5.1) 

aK='rKL/2k= . (5.2a) 

For the sake of simplicity, we introduce the following 
three conditions. (1) The Fourier transform of the 
'atomic' polarizability v~(I + q; J + q') is approximated 
by vt(I-J) .  Atoms in different unit cells are assumed 
to have the same scattering factor as in the perfect 

unit cell. (2) The quantities, (q-q')uz, are negligibly 
small, compared with ( q - q ' ) .  1. (3) The geometrical 
factor, pd(p + J  + ¢0=, is approximated by p=/(p + J)=. In 
the following calculation, the conditions (2) and (3) 
are not really necessary, but have been adopted in or- 
der to avoid further complications in the mathematical 
manipulation. 

In this approximation, the matrix M can be given 
in the following form: 

[M(k)]~-y'= {zzh~(q)6u 

_ 1 ~, ~zvsv,(I-- J) exp [ - i ( I -  J)l] }6qq, 
N t 

1 
- N ~ v s v , ( I - J )  {exp [ - i ( I - J ) u , ] - ~ }  

x exp [ - i ( I + q - a - q ' ) l ] ,  (5.3) 

where 
h'~(q)=(k + I + q ) 2 - k  2. (5.4) 

We have used the property of the generalized Kron- 
ecker delta 

1 ~ exp [ - i (K+q) l ]=rqo  (5.5) 
N I  

for a reciprocal-lattice vector K. The quantity ~ is in- 
troduced as a renormalization factor, relating to the 
choice of the perfect reference crystal that is determined 
experimentally to be most appropriate (this can be 
understood in analogy to the mass and charge renor- 
malization of electrons in field theory). If one wishes. 
one can set ~ equal to one. Using the matrix W defined 
by (3.3b), we can also express the matrix M as 

M =  ~ W-~(/)M,W(I),  
l 

where 
q ,  q ,  1 

(M,),. j = ~- [zzhj(q)6,j-o~z.~v(I-J)]6q.q, 

and 

(5.6) 

1 
N TsV,(I--J) (exp [ - i ( I - J ) u , ] - a } ,  (5.7) 

1 
v ( I - J ) ~  ~ v , ( I -  J ) .  

7 
(5.8) 

In equation (5.3) and (5.6) the matrix M is given as 
a sum of two matrices, one of which is diagonal with 
respect to (q, q') elements. Therefore, the super-matrix 
M is written 

M = H + V ,  
and 

where 

v= E w-'(Ov,w(z), 
l 

q l  qe 
[HI,, j = [h(q)],, jrq. q, 

and 
q, q' regardless of q and q'. [v,],.., = [v(1)],..,, 

(5.9a) 

(5.9b) 

(5.10a) 

(5.10b) 
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The matrices expressed by lower case letters are or- 
dinary matrices whose rows and columns are num- 
bered by I and J. The upper case letters are used to 
describe the super-matrices. The (I,J) elements of the 
matrices, h(q) and v~, are given from equation (5.3) or 
(5.6): 

[h (q ) ] i ,  j = T l h / ( q ) O l j - -  ~ T j V ( I - -  J ) ( 5 . 1 0 b )  

and 
1 

[v(l)] , . ,  = - -~  vav , ( [ -3 )  [exp [ - i ( I -J )u t] -~] .  (5.1 lb) 

Next we introduce the transformation matrix T which 
diagonalizes the H matrix: 

= T - ' H T .  (5.12) 

The matrix T is a diagonal matrix with respect to q 
and q', since the H has been diagonal with respect to 
q and q', and has the components 

q ,  q t  
IT]I, j = [t(q )],, a6q, q. . (5.13) 

This matrix satisfies the following relations" 

T T - I = T l l T =  I (5.14) 
and 

[T, W(R)] = IT- l ,  W(R)] 

= [T, W -  I(R)] = [T- 1, W -  I(R)] = 0 .  (5.15) 

In this transformation, the matrix S is transformed into 

~ = T - t S T .  (5.16) 

As shown in previous papers (Kuriyama, 1970, 1972, 
1973), the matrix S satisfies the dynamical diffraction 
equation 

dS(aK) 
- -  i M .  S(ar) 

do'r 
or 

dS(t) 
dt 

- ( - i ) a r M "  S(t ) -=2M • S(t) 

(5.17a) 

(5.17b) 

with the initial condition S(0)= I, where 

( - i ) a r = ( - i ) z r L / 2 k  cos ¢ r = 2  (5.2b) 

as defined previously by (5.2a), and Cr is the direction 
cosine of the propagation vector k'. After S(t) is found 
from (5.17b), the value of t is set equal to one: 

S(k) = [S(k; t)lt=l • (5.18) 

It follows from (5.16) and (5.14) that the equation 
(5.17b) is invariant under the transformation S to S. 
Knowing that the matrix M is composed of the two 
parts as given by (5.9a), we transform S again into S~: 

St=exp [ - 2 H  t]g. (5.19) 

Then, substituting this into (5.17b), we obtain the new 
equation 

dSZ(t) _ 2VZ(t)Sf(t) (5.20) 
dt 

where 

W(t) =exp (-2~lt)V exp (2fit) 

=exp ( -2Ht )T- 'VT  exp (2~lt). (5.21) 

In the Neumann-Liouville expansion, the solution of 
(5.20) is written 

Sl(t) -- ~ ( - - i c rg )  m ds1 ds2  . . .  d s m - 1  
m----O 0 

X V I ( s 1 )  . . .  V I ( S m )  

c~ 1 t t t 

x P[Vt(sx) . . .  g I ( sm)]  

=P[exp { ( -  io'K) I t Vt(s) ds}]=P[exp (~)1, 
d 0 

(5.22) 

where P indicates the operation that, in a product of 
coordinate, say s,, labeled matrices, it rearranges them 
from right to left in the order of increasing s coor- 
dinates. 

Using (5.22), (5.19), (5.16), the matrix F, (4.11), is 
now given by 

[Fl[/.*o =AoAK exp ( - i eR ' )  ~ ~ [TW(R') 
q q' 

x {exp [-iaKHt]}P[exp (~)]W-I(R)T-1]]:'~ ' • (5.23) 

Substituting (5.9b) into (5.21), the matrix W(s) can be 
expressed, in terms of a lattice sum, by 

v'(s) 
= ~ exp ( -2As)T- 'W-l( l )V(l)W(l)T exp (2Hs). (5.24) 

l 

Thus, the matrix F can be written in terms of the lat- 
tice sums : 

g , O  [F]K, o=exp ( -  ieR') 

O St0 ,, × I;  I ; . . .  2 . . . . . .  
m = 0  lJ lm 

,tm)]K. o ,  (5.25) × 2 2 t A m "  ..  " ,  - "  
q q" 

where, for convenience, A0 and Ar are assumed to be 
one hereafter. Here 

Am(ll, 12,... 4,) = P[X(0)V(1)X(1)V(2) . . .  V(m)X(m)], 
-=Am(0,1,2, . . . ,m,m+l) (5.26) 

where 

X(n)~TW(I,) exp {2~'I(s,-sn+O}W-I(In+I)T -t. (5.27) 

A C 30A - 5* 
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In this notation, the P operates only on the s coor- 
dinates, although in (5.26) they are not written down 
separately from the I coordinates. Also, the variables, 
0 and m + 1, stand for the abbreviation of the sets of 
coordinates- 

O =- ( lo, so) = ( R', t ) , (5.28a) 
and 

m+ 1 ~( lm+l ,  Sm+l)-~-(R,O) . (5.28b) 

' It is known from (3.3b), (5.10) and (5.13) that the 
matrices, X, are diagonal with respect to q and q'. It 
is also evident from (5.11) that all the (q, q') elements 
of the matrix V~ are equal to each other. Thus, we ob- 
tain 

~ [Am(O, 1 , . . . , m , m +  1)] ~'"' 
q q" 

=P[{Tr  X(0)}v(t) {Tr X(1)} . . .  v(m) {Tr X(m)}], 

(5.29) 

where the trace of the matrix X is taken with respect 
to q. The explicit expression of the trace is given 
through (5.27) by 

[TrX(m)],,a= ~ ~ t:i(q)ti-sl(q)exp [--iaKr,(q) 
q i 

X(Sm--Sm+t)+iq(lm--lm+l)], (5.30) 

where r~(q)'s are the diagonal elements of the matrix A 
that are the characteristic values of the matrix H. The 
operation P demands that the functions, Tr X(m), be 
ordered from right to left in the increasing order of 
the s coordinates. By use of the step function 0(s), 
this operation can be performed to reduce (5.29) to 

~ [Am(0,1, . . . ,m+ 1)]q' q' = {O(so-sO Tr X(0)} 
q q '  

x v(1) . . .  v(m){O(Sm--Sm+,) Tr X(m)}, (5.31) .. 

where 

O(s,-s,+O= l for s , - s ,+ l  >O 
=0  for s , - s ,+ i<O J .  (5.32) 

Since the trace of X(m) is an exponential function of 
Sm -~ Sin+ t as.shown in (5:30), we can express the product 
of the step function and the matrix trace in the Fourier 
integral" 

O(s,-s,+x) Tr X(n)=S~:  (dco,/2zc) 

x g(co,; lm--lm+i) exp{ico,(s,--s,+t)}, (5.33) 

where the matrix g is defined by 

[g(co; t)], .  j 

= ~. ~ t,i(q) (--i)  t/}l(q) exp (iq. 1) (5.34) 
q i arri(q) + co- iJ 

~L 

with an infinitesimally small, positive number 6. Sub- 
stituting (5.33) into (5.31) and (5.25), we can perform 
the s=integrations and obtain 

~" ° ieR') 1 [F]K'°=exp ( -  ~" m! (--iaK)m dcoo . . .  
m=O 

• .. l~dcom exp (ico0So)5(co0- co0 . . . 

• . .  ~(COm_I-- (Din) exp (-- icomSm+ 1)  [ I ' Im(CO0,  

• ..,COm)]K,O, (5.35) 
where 

2n3(co)=exp [-i(cot/2)] sin (cot/2)/(co/2) (5.36) 

with So= t, being set equal to one in the final results, 
and Sm + 1 = 0, and 

la(coo,'' ",co,,) = ~ . . .  ~ g(coo; R-10v(10 
ll lm 

x g(cot; l t - lz)v( lz)  . . .  V(lm)g(com; Ira--R) . (5.37) 

Thus, the scattering amplitude for topography is given 
in terms of its moments. 

6. A single symmetrical Bragg diffraction 

The scattering amplitude for topography, (5.35), has 
been given by the products of matrices, which are no 
longer super-matrices, but the ordinary (I,J) matrices. 
In this section, we deal with the diffraction condition, 
in which the diffracted beams are found only around 
the transmitted-beam direction and the H-Bragg dif- 
fracted direction with reference to the perfect refer- 
ence crystal. In this condition, the scattering amplitude 
has a nonvanishing value for K = 0 and H. In this case, 
we can adopt an approximation to describe the (I,J) 
matrices by the two by two matrices, where I and J 
take the value of 0 or H. In this approximation, the 
matrices, h and v~, are given by 

h(q)= {h'o(q)-ow(O) - ~ r n v ( - H )  
- ~ v ( + H )  hn(q)-ow(O) } (6.1) 

and 

wt(H) 
w,(-n)  

(1 -- c0v(0) ) 

(6.2) 

where h~(q) is given by (5.4), v(0) by (5.8), and through 
(5.11) 

w,(K) = {exp [ - i K .  u~]-c~}v~(K). (6.3) 

To avoid mathematical complications we assume 
further that (1) the diffraction condition is of the sym- 
metrical Laue geometry, and (2) the classical flow 
vector, ], satisfies the condition ] .  q>>q2 for any q, 
where 

j=(k=/k= + qz)k + (kz/k= + Hz + qz) (k + H) . 

This approximation enables us to write 

h(q) =h(qr)+ 2kzqzl, (6.4) 
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h ( q t ) ' . . ~  - ( ho(q,) - -aV( '  H) 
--~v(+ H) hn(qt) ) (6.5a) 

hK(qt)=(k  + K ) Z - k 2 - o w ( O )  + 2(k + K)t . qt . (6.5b) 

Because of the property, (6.4), of the matrix h, the 
transformation matrix T can be chosen to be depen- 
dent only on q~ rather than on q. Thus, the charac- 
teristic values of h which are the diagonal elements of 
the matrix h are given by 

q(q) = 2,(qt) + 2k~qz, (6.6) 

where 2~(qt) are the characteristic values of the matrix 
h, and are given by 

2,(qt)= - v ( O ) - J l - (  - 1 ) ' R Q I - q t H )  . (6.7) 

Here the quantity r/is related to the angular deviation 
of the incident beam from the Bragg angle expected 
for the perfect reference crystal: 

(6.8) 2r/= - [ (k  + a ) 2 -  k2] . 

(6.9) 

(6.10) 

The function R is given by 

R(x) = 1/x 2 +/~, 
where 

f12 = o~2v(H)v( _ H ) .  

The subscript i represents the mode of the dynamical 
diffraction; the anomalous transmission mode is 
chosen for i= 1. 

In terms of these characteristic values, the transfor- 
mation matrix T can be given by 

:~. 

t (q0 -  v ( - H )  2t-ho(q,) 22-ho(q,) , (6.11a) 
?. 

while the inverse transformation is given by 

- 2:1 ~[ 22- ho(qt) --V(-- H) ]'~ t-l(qt) : -2z  2t-h0(q,) v ( - H )  , (6.11b) 

The function (5.34) is now written 

V 
g(co, l ) -  (2zc)3 

x ~ I daqDU)(q,) 

x exp ( iq.  1), 

5 3 1  

( - i )  
aK[2j(q,) + 2k~qz] + c o -  i3 

(6.14) 

where the sum over q is replaced by the integral and 
V is the volume of the crystal given by Nvc in terms 
of the unit-cell volume of the perfect reference crystal 
Vc. This integral can be performed first over qx, and 
then over q~ by a contour integration. Since the imag- 
inary part of v(0) is positive (Ashkin & Kuriyama, 
1966), the pole is found on the upper half of the com- 
plex plane: 

1 co 
qe= -~z  Re  [ v ( O ) + r l - ( - 1 ) ' R ( q - q t H ) ]  2aKkz 

1 
+ i ~ - ~  Im [v(0)- ( -1) 'R(~l-qtH)] ,  (6.15) 

which is equivalent to the solution of the dispersion 
equation with the boundary conditions in the tradi- 
tional dynamical diffraction theory. An advantage in 
the contour integration is found in the fact that ab- 
sorption is automatically taken care of. Thus, the 
matrix g is given by 

g(co" 1 ) = ~  V 5(lx) 1 0(l~) (6.16) ' d f i  

x I dqD")(q) exp [i{qlt +qfl~}] o 

The integral in (6.16) is a familiar one in the dynam- 
ical diffraction theory for a perfect crystal when the 
incident wave is treated as a spherical wave. Kato 
(1968) calculated this integral. If we adopt Kato's nota- 
tions, 

v(H)=fl exp (i5+); v ( - H ) = f l  exp ( i5_) ,  (6.17a) 

and 
o~=(lz/2kz)=(lz/2k cos On) 

q = ( l t / H ) = ( l t / 2 k  sin 08), 

(6.17b) 

(6.170 

Thus, if we define the matrix composed of the dynamical 
field functions (Kuriyama, 1969) by 

[DU)]l ' a = t n t~  1 , (6.12) 

then we can define the matrix U by 

u = ( U o  Un)  
U_n Uo (6.18a) 

then this matrix is given in the present approximation 
by 

; R ] - - ~  

. rl - Hch .] D")(q0 ~(-1) 'V(~RH) ½[1+( -1 ) '  R J . 

(6.13) 

where the elements U~ are given by Kato's U o func- 
tions as Ug=O(c~,lql)UK: 

U0(a, q) = zcfl [(c~ - q)l(o~ + q)]'/zJ~[fl (~z _ q 2),/2] (6.18b) 

U,(oc, q ) = rcifl, exp [i5 + ]Jo[fl (c~Z - q2) 1/2] 

/ U_u(o~,q)=rdfl exp [iS_]Jo[fl(a2-qZ)l/Z]. 

(6.18e) 

(6.18d) 
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In terms of this matrix U, we obtain 

g (o) ; l )=  ~ 2ksin0B.  

x J(l~)O(lz)O(~-IqDU(l) exp [iK(O),I)], 
where 

~(o~,l) -- {v(o) +,~}~ +,~q - (UL)co 
and 

H =  2k sin 0~. 

(6"19) 

(6.20) 

Substituting this expression for g into equation 
(5.37), we obtain 

g,,,(O)o, ~ol, • • • co,,)-- ~ 2k sin 0n 

× y . . .  ~ ~(R;-t~) . . .  ~( t_-  R~) 
i l  l m  

x O(R'~-- lxz).. .  O(Imz- Rz) 

x O ( o ¢ o - O q - I q o - q d )  . . .  

• ..  O ( ~ , - ~ t , + x - l q m - q , + l l )  
x U(R'- lx)v(10O(l l-12)  . . .  v ( lm)U( l , -R)  

x exp [i(x(Ogo; R'  -- 11) 

+x(oA; lx-12)+ . . .  +x(Ogm; lm-l,,+x)}], (6.21) 

where ~q and q, are defined by (6.17) and therefore are 
related to l,. Because of the property of the ~ func- 
tion, (5.36), we assume that all the og,'s can be replaced 
by 09o. The permutat ion of these 090 yields the same 
term m! times, cancelling the factor of (l/rot) in (5.35). 
At this stage, we replace the lattice sums by the inte- 
grations over the crystal volume, and change the vari- 
ables l, to ct, and q, using the relations (6.17b and c). 
We also use the matrix w defined by (6.2). Through 
these processes, the higher-order factors involving V, 
L, N, k sin On and k cos On become unity. Thus we 
obtain 

[F l~..*o = Nx exp [i~(R', R)I ...~--o 

I . . .  
x 0 ( ~ o - ~ 0 0 ( ~ , - ~ 2 )  . . .  0 (~ , - -~m+, )  

x 0 (0t0- 0q - [q0- qxl) . - .  

• ..  O(~m-~tm+x-lqm-qm+ll) 
x O(~t0 - oq, q o -  ql)w(~t, qx)U(oq - 0t2, ql - q 2 )  . - .  

. . .  w(Otm, qm)U(~m-O~m+l, qm-qm+x), (6.22) 

where the normalization factor NK and the phase fac- 
tor ~(R', R) are defined by 

AoArV 6(R '~-R: , )6(R '~-R~-L)  (6.23) 
N K -  2k sin 0B 

and 

( v(o)+~ ~(R~-R~)+ 
q~(R',R)= \2kc--~ 0~/ 2k sin 0s 

(R;-R,). 

(6,24) 

Owing to the presence of the step functions, the 
range of each integral is limited within the diffracting 
domain of atoms (Kuriyama, 1968, 1969). The entire 
domain of diffraction in which atoms can participate 
in this scattering is shown in Fig. 1. The domain is 
bounded by four planes: two of them intersect at t = 
R ,  z = 0 ,  the other two intersect at t=R; ,  z = L  and 
the angles between these two planes are equal to 20s, 
making an angle of 0s with the diffracting plane in both 
directions. 

7. Dynamical diffraction equation in the spatial 
coordinate representation 

We introduce the set of new variables (x,,y,) by the 
transformation 

(;:) - -  

(7.1) 

Then the diffracting domain is represented by a rectan- 
gle in the xy plane as shown in Fig. 2. The range of 
each two-dimensional integral in (6.22) is, in turn, 
represented by rectangles possessing a common corner 
at (xo, Yo) that is the observation point:  the range of 
(Xn,y,) is given by 

x,, + 1 < x,, < Xo; y,  + 1 < Y,, < Yo, (7.2) 

and all the variables are also limited within the dif- 
fracting domain. Thus the integrals over ct and q are 
expressed, in terms of x and y, by 

I . . . I d o q d q x . . . d o ~ m d q , ~ - - - ~ ( - l / 2 ) m I ~ + d x , ~  

Y m +  1 ~ x 2  Y2  

(7.3) 
where 

Xm+t  < x m <  . . .  < X l < X o ; Y m + l  < y m <  ' ' '  < y i  < y o "  

(7.4) 

I .,,, 
g 

D IFFRACTING DOMAIN 

OF A T O M S  

~OINT ) 

z ' O  • .#s 

ff 

, ,  ~ . . . . . . . . . . . . .  ~ I N T  ) 

Fig. 1. A diffracting domain of atoms in the symmetrical Laue 
geometry. R and R' are the entry position of the X-ray beam 
and an exit (or observation) position of the diffracted X-ray 
beam. The shaded area represents the diffracting domain. 
0B is the Brass ansle, 
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The integral ranges in (7.3) are equivalent to the follow- 
ing one 

( -  I/2) m dxl @1 dx2 . . .  
X m +  1 C X r a +  1 X m +  1 

I 
X m - -  1 IYm-- 1 

. . .  dXm dYm, (7.5) 
X m  + 1 tgYm + 1 

since the range of x., for example, is given by 

x,,, + t < x, < Xo; x,+t < x , ,  (7.6) 

and is depicted by a shaded area in Fig. 3. 
For convenience, we write the scattering amplitude 

(4.8) as 

(k~, R'; out Ik, R; in) 
=zxNx exp [itp(R',R)] [~F(R',R)]K.o, (7.7) 

where the matrix T represents the sum of the terms 

(am*l 'qm.i ] 
mtXm., .Ym., ) 

ENTRANCE 
POINT 

o) 

OIFFRACTING 

DOMAIN OF 

ATOMS 

~ - . .  

C 

/ 

(ao,qo) m(xo,y o ) 
OBSERVATION 

POINT 

/ EXIT SURFACE / 
1 
.1 
1 

% 
Fig. 2. The diffracting domain in a transformed coordinate 

system. 

Xn., 

0 Xm*, Xo Xn 

Fig. 3. Illustration of the integral ranges in the scattering 
amplitude. 

involving multiple integrals given by (6.22). Then the 
matrix T is written, based on the discussion above, 

°° i i~ m Y 

V(X--X"y--Y')=m~=O\~] 52 ddJl Sy. drh 

S ~1 S;' dr/2 S ~m-I S ?/m-' x d~2 .. • d~m dr/,,, 
Xe X e  Y e  

× O(x-  ~ , ,y-  r/~)w(~r/~)o( ~ -  ~,r/~- r/~) 
× W(~2r/2)... W(~mr/m)O(~m--Xe, r/m--Ye), (7.8) 

where the coordinate (Xe, ye) represents the entry point 
of the incoming beam that is equivalent to R in the 
crystal coordinate system, and the variables (~,,r/,) are 
related to the crystal coordinates by the transforma- 
tions defined by (7.1) and (6.17a and b). To obtain the 
scattering amplitude (7.7) the coordinate (x,y) should be 
set at the observation point R'. However, we can consider 
that the matrix ~F is a function of the continuous vari- 
ables x and y, the ranges of which are bounded within 
the interior (including the crystal surfaces) of the 
crystal. 

Equation (7.8) can be looked at from a different 
point of view. The mathematical form of (7.8) is none 
other than the solution of an integral equation in an 
infinite series expansion. Therefore, we can conclude 
that the function '*l(x,y) satisfies the integral equation 

x U(x-{,y-r/)w({,r/)T(g~-xe, r/-y,) 
= U ( x - x , , y - y , ) .  (7.9) 

The elements of the matrix O ( x -  ~,y-r / )  are obtained 
from equations (6.18a, b and c) using the transforma- 
tion (7.1) as follows 

( Uo(x,y) UH(x,y) ) 
U(x,y)= U_n(x,y) Uo(x,y) , (7.10a) 

where 

U°(x'Y)=~zfl(Y/X)U2Jl(fll/xY)-- } 
U+H(x,y)=irtfl exp [ir±]Jo(flL/xy) (7.10b) 

for positive values of x and y, and U0 and U±n be- 
come zero in the negative ranges of x and y. The matrix 
w is obtained from equation (6.2) and (6.3) by trans- 
forming the crystal coordinate to the (x,y) coordinate. 

The scattering amplitude of an imperfect crystal for 
a single symmetrical Bragg diffraction has, therefore, 
been expressed by the matrix • which satisfies the in- 
tegral equation given by (7.9). This equation has been 
expressed in the spatial coordinate system (x,y) which 
is directly related to the actual coordinate system of 
the crystal. With this view, we can consider the integral 
equation (7.9) as the dynamical diffraction equation 
for imperfect crystals in the spatial coordinate repre- 
sentation. The dynamical diffraction equation (Kuriy- 
ama, 1970, 1972, 1973) previously mentioned in (5.17) 
still remains as the basic equation for dynamical dif- 
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fraction in imperfect crystals when one uses the mo- 
mentum representation. 

8. Discussion 

The dynamical diffraction equation for imperfect crys- 
tals has been derived in the spatial coordinate represen- 
tation for a single symmetrical Bragg diffraction. Be- 
cause of the generality of its mathematical form, this 
integral equation can be considered to hold also for 
more general diffraction conditions. For instance, 
asymmetrical diffraction conditions can be accom- 
modated if one replaces the matrix U by calculating 
the propagators g(co; l) in (5.34) for a given geometry. 
However, the transformation from the crystal coor- 
dinate to the (x , y )  coordinate system would become 
more complicated. In a similar way, the multiple Bragg 
diffraction conditions can be treated by replacing the 
two-by-two matrices, 13 and w, by matrices of higher 
rank. Again a more complicated transformation from 
the crystal coordinate system to the (x , y )  coordinate 
system would be expected. 

As long as one can find the proper transformation 
to the (x , y )  coordinate system, the dynamical diffrac- 
tion equation for these general geometrical and diffrac- 
tion conditions takes the same form, an integral equa- 
tion, as obtained in the previous section. Therefore, 
it can be concluded that the integral equation of the 
matrix ~ is, indeed, a basic dynamical diffraction equa- 
tion for imperfect crystals. In view of this, this equa- 
tion is equivalent to the dynamical diffraction equa- 
tion derived previously in the momentum representa- 
tion (Kuriyama, 1970, 1972, 1973). 

Although it may seem strange, it is true that in this 
paper we arrived at the integral equation after the solu- 
tion of this equation had been found. This chronology 
was unavoidable at that time, since our interest was 
primarily to solve the dynamical diffraction equation 
in the momentum representation, (5.17), and express 
the solution as a function of position within the crystal 
in terms of the given spatial displacements of atoms. 
Since (7.7) has been found to be the solution of the 
integral equation, although expanded in an infinite series, 
one may wonder if the equation (7.9) is of any signif- 
icance. Indeed, (7.7) can be a sufficient expression of 
the solution, if the series converges very rapidly within 
the first few terms for particular sets of atomic dis- 
placements. 

For example, imperfections that are well localized 
and isolated from each other provide an example for 
which (7.7) is an adequate expression (Kuriyama, 
1969). Another example can be found in the case where 
imperfections are again local (or given by a well de- 
fined function), and are statistically distributed over 
the entire crystal (Kuriyama, 1967; Kuriyama & Miya- 
kawa, 1969). However, when imperfections are linked 
with each other or spread over a relatively large por- 
tion of the diffracting domain, the first few terms may 
ac t  be sufficient to represent the series, Since the 

matrix 13 represents the propagation of scattered waves 
inside the perfect reference crystal, the terms, U w U, 
IJ w U w U, etc., correspond to the one-collision, two- 
collision, etc. processes where after each collision, the 
waves propagate again as if they are in the perfect 
reference crystal. 

It is therefore obvious that the multiple-collision 
processes (higher-order terms in the series) cannot be 
neglected for imperfections that occupy a large por- 
tion of the diffracting domain. In this case, an infinite 
series expansion of the solution is not convenient. Once 
the specific set of atomic displacements is given every- 
where inside the diffracting domain, one can seek the 
solution analytically or numerically in the most con- 
venient form for the given set by starting with the in- 
tegral equation, thus avoiding a slowly converging 
form of the solution. In this sense, the integral equa- 
tion of dynamical diffraction offers a larger latitude 
than its solution in the form of a series expansion. 

Among several phenomenological theories of dynam- 
ical diffraction in imperfect crystals, the wave theory 
(Takagi, 1962, 1969; Taupin, 1964) was being rapidly 
accepted without careful theoretical justification 
(Kuriyama, 1972). Undoubtedly it was easily un- 
derstood in terms of the then existing knowledge of 
the dynamical theory for perfect crystals if the concept 
of the local reciprocal lattice was accepted. In addition, 
with the use of computers, the wave theory was thought 
to be easily solvable, case by case, for various specific 
types of imperfection. It has, however, become ob- 
vious that solving the equation for the wave theory is 
quite cumbersome, requiring a large effort in com- 
puter calculation even for a single realistic type of im- 
perfection. The situation in the case of the ray theory 
is just as bad. If one has to solve equations by com- 
puters anyway, then one should start with the most 
fundamental equation which, from a theoretical point, 
has far fewer restrictions on its validity. The integral 
equation derived in the previous section is one of such 
fundamental equations. 

When the fundamental dynamical diffraction equa- 
tion is expressed in the momentum representation, as 
given by (5.17), and accompanied by its initial con- 
dition [S(t0, to)= I, where to = 0  in (5.17)], the S matrix 
becomes what is known as the matricant of the sys- 
tem, which will be written at the coordinate t as 
S(t, to) in terms of to. Owing to the properties of ma- 
tricants (Gantmacher, 1959), the S matrix at the co- 
ordinate t is given by 

S(t, to)=S(t, t , , )S(t , , t ,_~). . .  S(tz, tl)S(tl, to) (8.1) 

as the product of the matricants between any two 
points ordered along the path from to to t, where 

t > t, > t,_ 1 > . . .  > q > to • (8.2) 

By contrast, the ~ matrix in the spatial coordinate 
representation does not possess this property. The in- 
tegral equation cannot even be reduced to a convenient 
d.ifferen.tial equation, This mathematical complexity 
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doubtlessly creates difficulty in solving the intensity 
distribution in diffraction topographs for various types 
of imperfection. This complexity merely reflects the 
fact that, in an imperfect crystal, the beams tend to 
spread out as they scatter from different places in the 
crystal, and conversely, the beams at one point are 
under the influence of many beams created at different 
locations before they reach that point. 

If one can assert that the beams inside the crystal 
proceed along a path, then the integral equation (7.9) 
can be reduced to a differential equation and the 
matrix becomes the matricant of the system. In this 
case, the determination of the path itself becomes a 
separate problem. For instance, in the calculation of 
the propagator 9 in § 6, one could have employed the 
approximation of the stationary phase, as demonstrated 
previously by Kuriyama (1968). Then, by retaining 
only the anomalous transmission mode, a path could 
have been established. Along this path, the final equa- 
tion could have assumed a differential equation form, 
making the W matrix a matricant. The diffraction con- 
ditions in high-energy electron diffraction make this 
approximation practical, since the Bragg angles are 
extremely small. 
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A quantitative relation is obtained between Bijvoet differences and the deviations from centrosymmetry " 
of a structure. An expression is derived for the root-mean-square value of A, where 

N 
A=[I(H)-l(f i ) ] /a~,  a2= Y. fJ, 

J=l 
ih terms of (IAral > and k" where Arj are the deviations in atomic coordinates from ideal centrosym- 
metry, and k" = Af"/f ' .  Curves are given connecting r.m.s. A with (IArA) for a two-dimensional hypo- 
thetical model. When (IArjl) is small the r.m.s. A is quite sensitive to (IAuI) with a moderate 
anomalous scatterer present in the structure. The behaviour of the Bijvoet ratio is also studied empirically. 

1. Introduction 

In a recent paper from this laboratory (Srinivasan & 
Vijayalakshmi, 1972) the use of X-ray anomalous scat- 
tering as a sensitive tool for resolving the space-group 
ambiguity of dibenzyl disulphide was discussed. The 
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use of X-ray anomalous scattering effects for. space 
group determination is well known (Okaya & Pepin- 
sky, 1961 ; Ramachandran & Parthasarathy, J963; 
Parthasarathy & Ramachandran,  1963). However~ it 
has not been apparent that it could be used success- 
fully in cases where the distinction between alternate 
space groups is a subtle one involving small deviations 
from centrosymmetry. This was in fact the case with 
dibenzyl disulphide where it was shown that if the 


